If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+4x-360=0
a = 12; b = 4; c = -360;
Δ = b2-4ac
Δ = 42-4·12·(-360)
Δ = 17296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{17296}=\sqrt{16*1081}=\sqrt{16}*\sqrt{1081}=4\sqrt{1081}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{1081}}{2*12}=\frac{-4-4\sqrt{1081}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{1081}}{2*12}=\frac{-4+4\sqrt{1081}}{24} $
| X+5~2=x+7 | | 4y+19=-2y-17 | | -5(3t+1)=-20 | | 4y+19=2y-17 | | 7x-6x=5x+6 | | -2x-11=-27 | | 44=2(3x-5( | | -40x+26x=-14 | | 4w+25=-15 | | -5.x=45.5 | | -7x-49=-5x-45 | | (43-2x)=(12x+1) | | 9(x-3.3)=1.8 | | -6w-18=12 | | 9(x-3.3)=1 | | 3(t+8)=33 | | 5x+53=10x-5 | | 3m-45=50 | | 2x−4=4(x−5) | | 8g-20=3g-40 | | a÷6=5 | | −3−6(−6x−4)=−(3+5x)+6x | | 9a-10=71 | | 56=2k | | -8z-9=8z-9 | | 5g=5 | | 6^(-0.2x)=10 | | 1h+1S=15.6 | | 10.2+y=12 | | 1+3x=130 | | 8x-88=2x34 | | -235.62=15.4x |